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Abstract

We show that the space of compact lagrangian submanifolds of a symplectic 4-manifold is a
coisotropic submanifold of the space of all codimension two submanifolds, the latter being equipped
with a natural symplectic structure. The characteristic foliation of this coisotropic submanifold
is shown to coincide with the isodrastic foliation of Weinstein. We also show that the space of
lagrangian submanifolds diffeomorphic to the 2-sphere is a lagrangian submanifold. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

This paper is a part of a general programme to investigate the geometry of the space
Sub(N) of smooth submanifolds of a given finite-dimensional smooth manifoldN . In gen-
eral, the infinite-dimensional manifold Sub(N) has many connected components, each of
which consists of submanifolds ofN of a particular diffeomorphism type. For a smooth
manifoldM, we denote Sub(M,N) the submanifold of Sub(N) consisting of all subman-
ifolds of N of diffeomorphism typeM (so that Sub(M,N) is a union of components
of Sub(N)). Throughout this paper we assume thatM, N are connected and without
boundary, andM is compact. Having chosenN , we consider only those manifoldsM
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for which Sub(M,N) is nonempty. It is often the case that providingM andN with ge-
ometric structures gives rise to some geometric structure on the manifold Sub(M,N),
and we wish to know to what extent the three geometries interact. An interesting ex-
ample arises whenN is equipped with a volume element and when the codimension is
equal to 2: a generalization of a construction of Marsden and Weinstein [7] then pro-
vides Sub(M,N) with a (weak) symplectic structureλ (see Section 3 for details). For
M = S1 and the volume element coming from a riemannian metric on a 3-manifold
N , Brylinski [1] has shown that(Sub(M,N), λ) has a natural Kähler structure. LeBrun
[6] has generalized Brylinski’s ideas by considering the Kähler geometry of the space
of codimension two timelike submanifolds in a pseudoriemannian manifold of arbitrary
dimension. Another case, of key importance in general relativity theory, is the space of
codimension two spacelike surfaces in a lorentzian manifold. It may be demonstrated
that this space admits a natural parakählerian structure (unpublished work by the au-
thor). Imposing structure onM as well as onN leads to other interesting possibilities.
For example, the choice of a volume element onM and a symplectic structure onN
gives a symplectic structure on the space of smooth mapsC(M,N), the geometry of
which has been studied by Donaldson [2], who develops several very interesting exam-
ples in the context of Kähler and hyperkähler geometry, and by Hitchin [5], who ex-
plores the structure of the space of special lagrangian submanifolds of a Calabi–Yau
manifold.

Here, and in subsequent work [9], we examine the codimension two “pure” symplectic
case, i.e., we assume thatN is an arbitrary symplectic manifold with symplectic formω,
and thatM has no structure save for a choice of orientation. The basic question is now
the following: how does the symplectic geometry of(Sub(M,N), λ) interact with that of
(N, ω)? In particular, how do the natural classes of submanifolds of(N, ω), e.g., symplectic
submanifolds and coisotropic submanifolds, sit inside(Sub(M,N), λ)? In this paper we fo-
cus on the first nontrivial case, i.e., when the dimension ofN is equal to 4 andM is a surface,
thereby commencing a study of the space of lagrangian submanifolds — a keytheme in
symplectic geometry — in an infinite-dimensional symplectic framework. Our main result
is that the space Sub0(M,N,ω) of lagrangian submanifolds of(N, ω) of diffeomorphism
typeM is a coisotropic submanifold of(Sub(M,N), λ), and, in the special caseM = S2,
Sub0(M,N,ω) is actually a lagrangian submanifold of(Sub(M,N), λ). In addition, the
characteristic foliation of the coisotropic submanifold Sub0(M,N,ω) is shown to coincide
with the isodrastic foliation of Weinstein [11] which he introduced to study the classical
limit of the Berry phase.

The paper is organized as follows. In Section 2 we summarize standard material relating
to differential forms on spaces of maps and on the manifold of submanifolds. This section
also serves to introduce our notation. In Section 3 we specialize to the codimension two
situation, and we define the symplectic form on the manifold of submanifolds of a symplectic
manifold, as well as summarizing its basic invariance properties. Some general remarks on
the space of lagrangian submanifolds are made in Section 4, and, in Section 5, we state and
prove our main results for the four-dimensional case. Finally, we describe some possibilities
for further work.
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In what follows, all finite-dimensional manifolds and maps between them are smooth.
If an appropriate category of Fréchet manifolds, e.g., the Nash–Moser category (see [4]) is
chosen, then the same will be true also of all our infinite-dimensional manifolds and maps,
but we do not discuss the analytical details here.

2. General framework

Let M,N be connected manifolds without boundary (of dimensionsm andn, respec-
tively), and assume thatM is compact and oriented. Consider the manifoldC(M,N) of
maps fromM into N . For f ∈ C(M,N), the tangent space is given byTf C(M,N) =
Vectf (N) = {Z ∈ C(M,TN) : τN ◦Z = f }, whereτN : TN → N is the tangent bundle of
N . We denote the natural actions of Diff(M) and Diff(N) onC(M,N) byα andβ, respec-
tively. Thus, forφ ∈ Diff (M), αφ ∈ Diff (C(M,N)) is given byαφ(f ) = f ◦ φ, and, for
ψ ∈ Diff (N), βψ ∈ Diff (C(M,N)) is given byβψ(f ) = ψ◦f for all f ∈ C(M,N). Note
thatα is a right action andβ is a left action. We have the projectionsp : C(M,N)×M →
C(M,N); (f, x) 7→ f andq : C(M,N) × M → M; (f, x) 7→ x, and the evaluation
mape : C(M,N)×M → N; (f, x) 7→ f (x). We regardp as a (trivial) fibration, so that
we have the fibre integral

∫
p

: �(C(M,N) ×M) → �(C(M,N)), using which we may
construct differential forms onC(M,N) in the standard manner (see, e.g., [1]): define3 :
�(M)×�(N) → �(C(M,N)) by3(ξ, η) = ∫

p
q∗ξ ∧ e∗η for all ξ ∈ �(M), η ∈ �(N).

Note that ifξ ∈ �a(M) andη ∈ �b(M), then3(ξ, η) ∈ �a+b−m(C(M,N)) provided that
a + b ≥ m.

Using basic properties of the fibre integral, it is straightforward to prove the following:

Lemma 2.1.
1. 3(φ∗ξ, η) = α∗

φ−1(3(ξ, η)) for all ξ ∈ �(M), η ∈ �(N), φ ∈ Diff +(M),
2. 3(ξ,ψ∗η) = β∗

ψ(3(ξ, η)) for all ξ ∈ �(M), η ∈ �(N),ψ ∈ Diff (N).

Now consider the space of embeddings Emb(M,N) ofM intoN which is an open sub-
mainfold ofC(M,N). We assume that Emb(M,N) is nonempty in what follows, so that, in
particular, dimM ≤ dimN . We denote the restrictions of the maps defined above by the same
letters. Via the right actionα, we have the principal Diff+(M)-bundleγ : Emb(M,N) →
Sub(M,N); f 7→ [f ] = f (M), where Sub(M,N) = Emb(M,N)/Diff +(M) is the man-
ifold of (oriented) submanifolds ofN of diffeomorphism typeM. The principal bundle
γ may be thought of as a nonlinear analogue of the projection of a Stiefel manifold onto
the corresponding Grassmann manifold. The vertical distribution ofγ is given byVf =
KerDγ (f ) = Df◦Vect(M) ⊆ Vectf (N) = TfEmb(M,N) for all f ∈ Emb(M,N). Here
Vect(M), the space of vector fields onM, is regarded as the Lie algebra of Diff+(M) (with
bracket equal to the negative of the Lie bracket of vector fields, as usual). The base manifold
tangent spaces are given byT[f ]Sub(M,N) = 0(νf ), whereνf is the normal bundle of
f for all f ∈ Emb(M,N). Note that, since the actionsα andβ on Emb(M,N) commute,
the actionβ embeds Diff(N) as a subgroup of the group of automorphisms ofγ , and we
haveγ ◦ βψ = β̄ψ ◦ γ for all ψ ∈ Diff (N), whereβ̄ is the natural action of Diff(N) on
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Sub(M,N). We refer the reader to Swift [8] and references therein for more details on the
structure of the principal bundleγ , and for a corresponding treatment of the manifold of
immersions. The latter is more complicated than the embeddings case because the quotient
space of the manifold of immersions by the diffeomorphism group is not itself a smooth
manifold due to the presence of singularities corresponding to symmetric immersions. A
natural resolution of this singular space is described in [8].

3. Codimension two submanifolds

We now introduce a construction in the codimension two case which is a generalization
and modification of an idea due to Marsden and Weinstein [7] and Brylinski [1]. Suppose
thatn − m = 2 and thatN is equipped with a volume elementη. Defineλ̃ = 3(1, η) ∈
�2(Emb(M,N)). Since dη = 0 and exterior differentiation commutes with the fibre inte-
gral, we see that d̃λ = 0, i.e.,λ̃ is a presymplectic form on Emb(M,N). From the definition
of the fibre integral, a short computation shows thatλ̃ is given by

λ̃(f )(Z,W) =
∫
M

f ∗iW iZη, (1)

wheref ∗iW iZη ∈ �m(M) is defined by

(f ∗
W iZη)(x)(v1, . . . , vm) = η(f (x))(Z(x),W(x),Df(x)v1, . . . ,Df(x)vm), (2)

for all v1, . . . , vm ∈ TxM, x ∈ M, Z,W ∈ TfEmb(M,N),f ∈ Emb(M,N). Other
important properties of̃λ are given in Proposition 3.1.

Proposition 3.1.
1. α∗

φλ̃ = λ̃ for all φ ∈ Diff +(M),
2. β∗

ψλ̃ = λ̃ for all ψ ∈ Diff (N, η),

3. Kerλ̃ = KerDγ .

Proof.
1. Letφ ∈ Diff +(M). We haveα∗

φλ̃ = α∗
φ(3(1, η)) = 3(φ∗1, η)) = 3(1, η) = λ̃, where

we have used (1) of Lemma 2.1.
2. Letψ ∈ Diff (N, η). We haveβ∗

ψλ̃ = β∗
ψ(3(1, η)) = 3(1, ψ∗η) = 3(1, η) = λ̃, where

we have used (2) of Lemma 2.1.
3. (3) Letf ∈ Emb(M,N).

First supposeZ ∈ KerDγ (f ), so there existsX ∈ Vect(M) with Z = Df ◦X. LetW ∈
TfEmb(M,N), x ∈ M, v1, . . . , vm ∈ TxM. Then, by (2),(f ∗iW iZη)(x)(v1, . . . , vm) =
η(f (x))(Df(x)X(x),W(x),Df(x)v1, . . . ,Df(x)vm) = 0 because{Df(x)X(x),Df(x)
v1, . . . ,Df(x)vm} is a linearly dependent set. Hence,Z ∈ Ker λ̃(f ), so KerDγ (f ) ⊆
Ker λ̃(f ).

Conversely, supposeZ ∈ Ker λ̃(f ), so that̃λ(f )(Z,W) = 0 for allW ∈ TfEmb(M,N).
Choose a riemannian metrick onN such that vol(k) = η and denote byνkf the geometric
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normal bundle off : M → (N, k). Then there exist uniqueX ∈ Vect(M) andZ⊥ ∈ 0(νkf )
such thatZ = Df ◦X+Z⊥. Assume thatZ⊥ 6= 0, so there exists an open setU inM such
thatZ⊥|U is nowhere vanishing. Without loss of generality, we may assume thatνkf |U is

trivializable. Now defineẐ = Z⊥/‖Z⊥‖|U and chooseŴ ∈ 0(νkf |U) such that(Ẑ, Ŵ ) is

an oriented orthonormal trivialization ofνkf |U . Finally, leta be a bump function onU and
defineW ∈ TfEmb(M,N) by

W(x) =
{
a(x)Ŵ (x), x ∈ U
0, x /∈ U, for all x ∈ M.

Then we have 0= λ̃(f )(Z,W) = λ̃(f )(Z⊥,W) = ∫
M
f ∗iW iZ⊥η = ∫

U
‖Z⊥‖a vol (f ∗k)

> 0, a contradiction. We conclude thatZ⊥ = 0, so thatZ = Df ◦X ∈ KerDγ (f ). Hence,
Ker λ̃(f ) ⊆ KerDγ (f ). �

Corollary 3.2.
1. There exists a unique symplectic formλ on Sub(M,N) such thatγ ∗λ = λ̃, i.e.,
(Sub(M,N), λ) is the reduced symplectic manifold associated with the presymplectic
manifold(Emb(M,N), λ̃).

2. Via the actionβ̄, Diff (N, η) acts by symplectomorphisms on the symplectic manifold
(Sub(M,N), λ), i.e., β̄∗

ψλ = λ for all ψ ∈ Diff (N, η).

Proof.
1. The facts thatα∗

φλ̃ = λ̃ for all φ ∈ Diff +(M), and KerDγ ⊆ Ker λ̃ imply that λ̃ is

γ -basic, so descends to a unique 2-formλ on Sub(M,N) satisfyingγ ∗λ = λ̃. Moreover,
λ̃ is closed becauseγ ∗ is injective andλ̃ is closed, andλ is nondegenerate because
Ker λ̃ ⊆ KerDγ .

2. We haveγ ∗(β̄∗
ψλ) = (β̄ψ ◦γ )∗λ = (γ ◦βψ)∗λ = β∗

ψ(γ
∗λ) = β∗

ψλ̃ = λ̃ = γ ∗λ. Hence,

sinceγ ∗ is injective,β̄∗
ψλ = λ for all ψ ∈ Diff (N, η).

�

Definition 3.3. Suppose thatn−m = 2 and thatN is equipped with a volume elementη.
Then(Sub(M,N), λ) is called thesymplectic manifold associated with(M,N, η).

Remark 3.4. To be precise, we should refer toλ as a weak symplectic form inasmuch as it is
only weakly nondegenerate, i.e. for each[f ] ∈ Sub(M,N), the linear map
Z̄ 7→ λ([f ])(Z̄, ·) of T[f ]Sub(M,N), which is a Fréchet space, intoT ∗

[f ]Sub(M,N),
which is not a Fréchet space, is injective with dense image, but it is not surjective(see
[1,4]). The adjective weak should always be understood, but it will be omitted in what
follows.

As remarked in Section 1, there are several important classical geometries that give rise
to a volume element, so the above construction may be performed in a variety of interesting
situations. In this paper, we are concerned solely with the symplectic case. Thus, suppose
thatω is a symplectic form onN with n = 2r ≥ 4, and letη = ωr/r! be the corresponding
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Liouville form. In this case, the presymplectic form̃λ (and hence the symplectic formλ)
may be written explicitly in terms of the symplectic formω.

Lemma 3.5. Letf ∈ Emb(M,N), Z,W ∈ TfEmb(M,N). Then,

λ̃(f )(Z,W)= 1

(r − 1)!

∫
M

((ω ◦ f )(Z,W)f ∗ω

−(r − 1)f ∗iZω ∧ f ∗iWω) ∧ (f ∗ω)r−2.

Proof. A simple computation using Eq. (1). �

Proposition 3.6. Via the actionβ̄,Diff (N, ω), the symplectomorphism group of(N, ω),
acts by symplectomorphisms on the symplectic manifold(Sub(M,N), λ), i.e., β̄∗

ψλ = λ for
all ψ ∈ Diff (N, ω).

Proof. Noting that Diff(N, ω) ≤ Diff (N, η), we just apply (2) of Corollary 3.2. �

The programme now is to investigate the interaction of the symplectic geometry of
the finite-dimensional symplectic manifold (N,ω) with that of the infinite-dimensional
symplectic manifold(Sub(M,N), λ). In particular, it is of interest to examine how special
classes of submanifolds of(N, ω), e.g., symplectic submanifolds, lagrangian submanifolds,
coisotropic submanifolds, fit together in(Sub(M,N), λ). The symplectic submanifolds
case is analysed in [9], and in Section 5 we apply our framework to the space of lagrangian
submanifolds of a symplectic 4-manifold. First, for convenience and by way of motivation,
we make a few remarks on the space of lagrangian submanifolds in general.

4. The space of lagrangian submanifolds of a symplectic manifold

For the convenience of the reader, we summarize the local structure of the space of
lagrangian submanifolds of an arbitrary symplectic manifold using the language of this
paper. For the technical details, we refer the reader to [10].

Let (N, ω) be a symplectic manifold andM a compact, oriented manifold withn =
2m. Let Emb0(M,N,ω) = {f ∈ Emb(M,N) : f ∗ω = 0} be the space of lagrangian
embeddings ofM into (N, ω), and Sub0(M,N,ω) = Emb0(M,N,ω)/Diff +(M) the
space of (oriented) lagrangian submanifolds of(N, ω) of diffeomorphism typeM. Us-
ing the cotangent bundle charts given by the Weinstein lagrangian neighbourhood theorem
[10], it can be shown that Emb0(M,N,ω) is a closed submanifold of Emb(M,N), and
that Sub0(M,N,ω) is a closed submanifold of Sub(M,N). We then have the principal
Diff +(M)-fibrationγ0 : Emb0(M,N,ω) → Sub0(M,N,ω), whereγ0 = γ |Emb0(M,N,ω).
We remark that the actionβ of the group Diff(N, ω) by automorphisms ofγ restricts to an
action by automorphisms of the closed principal subbundleγ0.

Now let f ∈ Emb0(M,N,ω). Differentiating the lagrangian conditionf ∗ω = 0 gives
us thatTfEmb0(M,N,ω) = {Z ∈ Vectf (N) : d(f ∗iZω) = 0} ⊆ Vectf (N) = TfEmb
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(M,N). Sincef is lagrangian, the epimorphismTfEmb(M,N) → �1(M); Z 7→ f ∗iZω
projects to a natural isomorphismTfSub(M,N) → �1(M); Z+Df◦Vect(M) 7→ f ∗iZω.
Similarly, the epimorphismT[f ]Emb0(M,N,ω) → Z1(M); Z 7→ f ∗iZω projects to a
natural isomorphism ofT[f ]Sub0(M,N,ω) onto Z1(M). Here,Z1(M) is the space of
closed 1-forms onM. Using these isomorphisms, we will identifyT[f ]Sub(M,N) with
�1(M) andT[f ]Sub0(M,N,ω) with Z1(M) for all [f ] ∈ Sub0(M,N,ω).

The above remarks may be summarized in the following manner. Leti0 : Sub0(M,N,ω)
→ Sub(M,N)denote inclusion. Then the exact sequence 0→ τSub0(M,N,ω) → i∗0τSub(M,N)

→ νi0 → 0 of vector bundles over Sub0(M,N,ω) is just the exact sequence of vec-
tor bundles associated to the principal Diff+(M)-bundleγ0 via the pushforward action of
Diff +(M) on the exact sequence 0→ Z1(M) → �1(M) → �1(M)/Z1(M) → 0 of real
vector spaces.

Finally, we describe the natural foliation on the manifold Sub0(M,N,ω). Denote by
B1(M) the space of exact 1-forms onM. For f ∈ Emb0(M,N,ω), define the subspace
Ĩf of TfEmb0(M,N,ω) by Ĩf = {Z ∈ Vectf (N) : f ∗iZω ∈ B1(M)}, and denote the
corresponding subspace ofT[f ]Sub0(M,N,ω) by I[f ] . Then, as above, the epimorphism
Ĩf → B1(M); Z 7→ f ∗iZω projects to an isomorphism ofI[f ] ontoB1(M). A distribution
on Sub0(M,N,ω) is defined as follows: associate with [f ] ∈ Sub0(M,N,ω) the subspace
I[f ] of T[f ]Sub0(M,N,ω). Note that the corresponding subbundle ofτSub0(M,N,ω) may be
identified with the vector bundle Emb0(M,N,ω) ×Diff +(M) B

1(M) → Sub0(M,N,ω).
Weinstein [11] has shown that this distribution is integrable and the corresponding foliation
I is called theisodrastic foliationof Sub0(M,N,ω).

5. The space of lagrangian submanifolds of a symplectic 4-manifold

We now discuss the space of lagrangian submanifolds of a symplectic 4-manifold within
the framework described in Section 3 (note that this is possible because 2+2 = 2×2). Let
(N, ω) be a symplectic 4-manifold andM a compact, oriented surface. Then (Definition
3.3), puttingη = 1

2(ω ∧ ω), we have the symplectic manifold(Sub(M,N), λ) associated
with (M,N, η). From Lemma 3.5, the corresponding presymplectic form is given by the
following proposition.

Proposition 5.1. Letf ∈ Emb(M,N), Z,W ∈ TfEmb(M,N). Then,

λ̃(f )(Z,W) =
∫
M

((ω ◦ f )(Z,W)f ∗ω − f ∗iZω ∧ f ∗iWω). (3)

Corollary 5.2. Let [f ] ∈ Sub0(M,N,ω). Then the symplectic form onT[f ]Sub(M,N) =
�1(M) is given by

λ([f ])(σ, τ ) =
∫
M

τ ∧ σ (4)

for all σ, τ ∈ �1(M).
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Proof. Use (3), the lagrangian condition, and the natural isomorphisms described in
Section 4. �

In order to examine the nature of the embeddingi0 : Sub0(M,N,ω) → Sub(M,N)w.r.t.
the symplectic structureλon Sub(M,N), we must consider, for each [f ] ∈ Sub0(M,N,ω),
how the subspaceT[f ]Sub0(M,N,ω) sits inside the symplectic vector space(T[f ]Sub
(M,N), λ([f ])). To do this, we compute the symplectic complement(T[f ]Sub0
(M,N,ω))λ([f ]).

Lemma 5.3. Let [f ] ∈ Sub0(M,N,ω). Then(T[f ]Sub0(M,N,ω))λ([f ]) = B1(M).

Proof. First let σ ∈ (T[f ]Sub0(M,N,ω))λ([f ]), so thatλ([f ])(σ, τ ) = 0 for all τ ∈
T[f ]Sub0(M,N,ω) = Z1(M). Hence,

∫
M
b dσ = −∫

M
db ∧ σ = −λ([f ])(σ,db) = 0

for all b ∈ �0(M). We conclude that dσ = 0, i.e.,σ ∈ Z1(M). Now consider [σ ] ∈
H 1(M), whereH 1(M) is the first de Rham cohomology space ofM. By Poincaré duality,
H 1(M) is equipped with the symplectic form�M , where�M([τ1], [τ2]) = ∫

M
τ2 ∧ τ1 for

all [τ1], [τ2] ∈ H 1(M). Suppose thatτ ∈ Z1(M). Then,�M([σ ], [τ ]) = ∫
M
τ ∧ σ =

λ([f ])(σ, τ ) = 0, so by the nondegeneracy of�M , we have [σ ] = 0, i.e.,σ ∈ B1(M). We
conclude that(T[f ]Sub0(M,N,ω))λ([f ]) ⊆ B1(M).

Conversely, suppose thatσ ∈ B1(M), say σ = da, wherea ∈ �0(M). Let τ ∈
T[f ]Sub0(M,N,ω) = Z1(M). Then,λ([f ])(σ, τ ) = ∫

M
τ∧σ = ∫

M
τ∧ da = ∫

M
adτ = 0.

Hence,σ ∈ (T[f ]Sub0(M,N,ω))λ([f ]), soB1(M) ⊆ (T[f ]Sub0(M,N,ω))λ([f ]). �

Theorem 5.4. Let (N, ω) be a symplectic 4-manifold andM a compact, oriented surface.
Consider the embeddingi0 : Sub0(M,N,ω) → (Sub(M,N), λ) of the manifold of la-
grangian submanifolds of(N, ω) of diffeomorphism typeM into the symplectic manifold
of all submanifolds ofN of diffeomorphism typeM. Then,
1. i0 is a coisotropic embedding,
2. i0 is a lagrangian embedding if and only ifM = S2.

Proof. Let [f ] ∈ Sub0(M,N,ω). Then, by Lemma 5.3,(T[f ]Sub0(M,N,ω))λ([f ]) =
B1(M) ⊆ Z1(M) = T[f ]Sub0(M,N,ω), so T[f ]Sub0(M,N,ω) is a coisotropic sub-
space of the symplectic vector space(T[f ]Sub(M,N), λ([f ])). Hence, the inclusioni0 :
Sub0(M,N,ω) → (Sub(M,N), λ) is a coisotropic embedding. Furthermore,i0 is a la-
grangian embedding if and only ifB1(M) = Z1(M), i.e., if and only ifH 1(M) = 0.
Since dimH 1(M) = 2 genus(M), we see thati0 is a lagrangian embedding if and only if
M = S2. �

Remark 5.5. Consider the manifoldSub(M,N). This may be given extra structure in two
different ways. On the one hand, choosing a volume elementη onN furnishesSub(M,N)
with the associated symplectic structureλ (Definition3.3).On the other hand, choosing a
symplectic formω onN gives rise to the closed submanifoldSub0(M,N,ω) of Sub(M,N)
as in Section4.Theorem5.4may now be interpreted in terms of the interaction between these
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two methods of imposing structure onSub(M,N).Fix a volume elementη onN and consider
the symplectic forms onN whose Liouville form is equal toη; such symplectic forms will be
calledη-compatible. The key point is that the lagrangian submanifolds of eachη-compatible
symplectic formω are ‘detected’ by the symplectic structureλ — which depends only on
η — in the sense that each of the submanifoldsSub0(M,N,ω) is actually coisotropic in
(Sub(M,N), λ). Thus, the compatibility of symplectic forms and volume elements manifests
itself at the level of lagrangian submanifolds. This idea will be explored further elsewhere,
as will the way in which the family of coisotropic submanifolds{Sub0(M,N,ω) : ω is
η-compatible} fit together in the symplectic manifold(Sub(M,N), λ) associated withη.

Let us return now to the situation where we have a fixed symplectic formω on N ,
and consider the symplectic reduction associated with the coisotropic embeddingi0 :
Sub0(M,N,ω) → (Sub(M,N), λ). Since(T[f ]Sub0(M,N,ω))λ([f ]) = B1(M) = I[f ]

for each [f ] ∈ Sub0(M,N,ω), the characteristic distribution ofi0 is precisely Weinstein’s
isodrastic distributionI as described in Section 4 (thus we have an alternative proof of the
integrability ofI in the four-dimensional case). This gives us a foliation of Sub0(M,N,ω)

by isotropic submanifolds of(Sub(M,N), λ). Furthermore, locally at least, we have a fi-
brationπ : Sub0(M,N,ω) → P , where the leaf spaceP = Sub0(M,N,ω)/I is equipped
with a symplectic structure� satisfyingπ∗� = i∗0λ (the global existence of such a fi-
bration will be explored elsewhere). We now give a more concrete description of(P,�),
the reduced symplectic manifold associated withi0. First observe that Diff+(M) acts by
linear symplectomorphisms on the symplectic vector space(H 1(M),�M), where, as in
the proof of Lemma 5.3,�M is the symplectic form coming from Poincaré duality. There-
fore, associated to the principal Diff+(M)-bundleγ0 is the symplectic vector bundleν :
Emb0(M,N,ω) ×Diff +(M) H

1(M) → Sub0(M,N,ω). Using Corollary 5.2 and Lemma
5.3, we see thatν may be naturally identified with the symplectic vector bundleπ∗τP =
τSub0(M,N,ω)/τ

λ
Sub0(M,N,ω)

. To summarize:

Theorem 5.6. Let (N, ω) be a symplectic 4-manifold andM a compact, oriented surface.
Then each tangent space of the reduced symplectic manifold(P,�) associated with the
coisotropic embeddingi0 : Sub0(M,N,ω) → (Sub(M,N), λ)may be naturally identified
with the finite-dimensional symplectic vector space(H 1(M),�M).

Finally we note that, in the caseM = S2, the reduced symplectic manifold is just a
point. Furthermore, using the ideas in the penultimate paragraph of Section 4, we see that
the total space of the cotangent bundle of the lagrangian submanifold Sub0(M,N,ω) of
(Sub(M,N, λ)) is given byT ∗Sub0(M,N,ω) = Emb0(M,N,ω) ×Diff +(M) (�

1(M)/

Z1(M)).

6. Further work

In this paper we have examined some basic aspects of the space of lagrangian surfaces
in a symplectic 4-manifold within a framework of infinite-dimensional symplectic geom-
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etry. Clearly there remains much to be done in terms of both theory and applications.
Examples of interesting possibilities for further work include: further connections with
Weinstein’s approach to the Berry phase [11]; links with symplectic topological work on
lagrangian knots, see, e.g. [3] and references therein; the action of Diff(N, ω), and of the
subgroup Ham(N, ω) of hamiltonian symplectomorphisms, on Sub0(M,N,ω); the role of
Sub0(M,N,ω) in the geometric quantization of the symplectic manifold(Sub(M,N), λ)
in the caseM = S2; computations for particular symplectic 4-manifolds such as products of
surfaces, cotangent bundles of surfaces, and complex surfaces. We intend to return to some
of these areas elsewhere. We remark that some of these ideas are also relevant in the study
of the manifold of symplectic submanifolds which may be analysed using a framework
of infinite-dimensional symplectic fibrations, symplectic connections and weak coupling
forms (see [9]).
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