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Abstract

We show that the space of compact lagrangian submanifolds of a symplectic 4-manifold is a
coisotropic submanifold of the space of all codimension two submanifolds, the latter being equipped
with a natural symplectic structure. The characteristic foliation of this coisotropic submanifold
is shown to coincide with the isodrastic foliation of Weinstein. We also show that the space of
lagrangian submanifolds diffeomorphic to the 2-sphere is alagrangian submanifold. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

This paper is a part of a general programme to investigate the geometry of the space
Sul(N) of smooth submanifolds of a given finite-dimensional smooth manifolth gen-
eral, the infinite-dimensional manifold SU¥) has many connected components, each of
which consists of submanifolds &f of a particular diffeomorphism type. For a smooth
manifold M, we denote SutM, N) the submanifold of Sulav) consisting of all subman-
ifolds of N of diffeomorphism typeM (so that SubM, N) is a union of components
of Suh(N)). Throughout this paper we assume tidét N are connected and without
boundary, andVf is compact. Having choseN, we consider only those manifoldd
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for which SuliM, N) is nonempty. It is often the case that provididgand N with ge-
ometric structures gives rise to some geometric structure on the manifold/Sob,

and we wish to know to what extent the three geometries interact. An interesting ex-
ample arises wheW is equipped with a volume element and when the codimension is
equal to 2: a generalization of a construction of Marsden and Weinstein [7] then pro-
vides SuliM, N) with a (weak) symplectic structure (see Section 3 for details). For

M = S* and the volume element coming from a riemannian metric on a 3-manifold
N, Brylinski [1] has shown thatSub(M, N), 1) has a natural Kéhler structure. LeBrun

[6] has generalized Brylinski's ideas by considering the Kéahler geometry of the space
of codimension two timelike submanifolds in a pseudoriemannian manifold of arbitrary
dimension. Another case, of key importance in general relativity theory, is the space of
codimension two spacelike surfaces in a lorentzian manifold. It may be demonstrated
that this space admits a natural parakéhlerian structure (unpublished work by the au-
thor). Imposing structure oM as well as onV leads to other interesting possibilities.

For example, the choice of a volume element Mnand a symplectic structure aN

gives a symplectic structure on the space of smooth niapg, N), the geometry of
which has been studied by Donaldson [2], who develops several very interesting exam-
ples in the context of Kéhler and hyperkéhler geometry, and by Hitchin [5], who ex-
plores the structure of the space of special lagrangian submanifolds of a Calabi—Yau
manifold.

Here, and in subsequent work [9], we examine the codimension two “pure” symplectic
case, i.e., we assume thitis an arbitrary symplectic manifold with symplectic fokm
and thatM has no structure save for a choice of orientation. The basic question is now
the following: how does the symplectic geometry(8uk(M, N), 1) interact with that of
(N, w)? In particular, how do the natural classes of submanifold&/otv), e.g., symplectic
submanifolds and coisotropic submanifolds, sitingfeleb(A, N), A)? In this paper we fo-
cus on the first nontrivial case, i.e., when the dimensiak i equal to 4 and/ is a surface,
thereby commencing a study of the space of lagrangian submanifeld keytheme in
symplectic geometry — in an infinite-dimensional symplectic framework. Our main result
is that the space SyM, N, w) of lagrangian submanifolds @&V, w) of diffeomorphism
type M is a coisotropic submanifold gSub(M, N), 1), and, in the special cagéd = S2,
Sulp(M, N, w) is actually a lagrangian submanifold ¢dub(M, N), 1). In addition, the
characteristic foliation of the coisotropic submanifold §ul, N, ) is shown to coincide
with the isodrastic foliation of Weinstein [11] which he introduced to study the classical
limit of the Berry phase.

The paper is organized as follows. In Section 2 we summarize standard material relating
to differential forms on spaces of maps and on the manifold of submanifolds. This section
also serves to introduce our notation. In Section 3 we specialize to the codimension two
situation, and we define the symplectic form on the manifold of submanifolds of a symplectic
manifold, as well as summarizing its basic invariance properties. Some general remarks on
the space of lagrangian submanifolds are made in Section 4, and, in Section 5, we state and
prove our main results for the four-dimensional case. Finally, we describe some possibilities
for further work.
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In what follows, all finite-dimensional manifolds and maps between them are smooth.
If an appropriate category of Fréchet manifolds, e.g., the Nash—Moser category (see [4]) is
chosen, then the same will be true also of all our infinite-dimensional manifolds and maps,
but we do not discuss the analytical details here.

2. General framework

Let M, N be connected manifolds without boundary (of dimensi@anandr, respec-
tively), and assume tha/ is compact and oriented. Consider the maniféid/, N) of
maps fromM into N. For f € C(M, N), the tangent space is given ByC(M, N) =
Vect;(N) ={Z e C(M,TN) : Ty o Z = f}, wherery : TN — N is the tangent bundle of
N. We denote the natural actions of Oi#ff ) and Diff(N) onC (M, N) by @ andg, respec-
tively. Thus, for¢ e Diff (M), oy € Diff (C(M, N)) is given byay(f) = f o ¢, and, for
¥ e Diff (N), By € Diff (C(M, N))isgivenbygy (f) = yo fforall f € C(M, N).Note
thatw is a right action ang is a left action. We have the projectiops C(M, N) x M —
CM,N);(f,x) —» fandg : C(M,N) x M — M, (f,x) — x, and the evaluation
mape : C(M,N) x M — N; (f,x) — f(x). We regardp as a (trivial) fibration, so that
we have the fibre integreﬂp :Q(C(M,N) x M) - Q(C(M, N)), using which we may
construct differential forms o6 (M, N) in the standard manner (see, e.g., [1]): define
QM) x Q(N) = Q(C(M,N) by A5, n) = [,g*E nernforalls € Q(M), n € QN).
Note that ifs € Q4(M) andy € QP(M), thenA (&, n) € Q*t0="(C(M, N)) provided that
a—+b>m.

Using basic properties of the fibre integral, it is straightforward to prove the following:

Lemma 2.1.
1. A(p*E, n) = a;&(A(s, n) forall € € Q(M), n € QN), ¢ e Diff T (M),
2. A&, y*n) = ,B;Z(A(f;‘, n)) forall ¢ € Q(M),n € Q(N), ¢ e Diff (N).

Now consider the space of embeddings EMbN) of M into N which is an open sub-
mainfold of C(M, N). We assume that Enil/, N) is nonempty in what follows, so that, in
particular, dimM < dimN.We denote the restrictions of the maps defined above by the same
letters. Via the right actioty, we have the principal Diff (M)-bundley : Emb(M, N) —
SubM, N); f+— [f] = f(M), where SubM, N) = Emb(M, N)/Diff *(M) is the man-
ifold of (oriented) submanifolds oV of diffeomorphism typeM. The principal bundle
y may be thought of as a nonlinear analogue of the projection of a Stiefel manifold onto
the corresponding Grassmann manifold. The vertical distributiop isfgiven byV, =
Ker Dy (f) = DfoVect(M) C Vecty(N) = TrEmb(M, N) forall f € Emb(M, N). Here
Vect(M), the space of vector fields du, is regarded as the Lie algebra of DiffM) (with
bracket equal to the negative of the Lie bracket of vector fields, as usual). The base manifold
tangent spaces are given By, Sub(M, N) = I'(vs), wherevy is the normal bundle of
f forall f € Emb(M, N). Note that, since the actionsands on EmiM, N) commute,
the actiong embeds Diff N) as a subgroup of the group of automorphisms pénd we
havey o By = By oy forall y € Diff (NV), whereg is the natural action of DiffN) on
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Sul(M, N). We refer the reader to Swift [8] and references therein for more details on the
structure of the principal bundle, and for a corresponding treatment of the manifold of
immersions. The latter is more complicated than the embeddings case because the quotient
space of the manifold of immersions by the diffeomorphism group is not itself a smooth
manifold due to the presence of singularities corresponding to symmetric immersions. A
natural resolution of this singular space is described in [8].

3. Codimension two submanifolds

We now introduce a construction in the codimension two case which is a generalization
and modification of an idea due to Marsden and Weinstein [7] and Brylinski [1]. Suppose
thatn — m = 2 and thatV is equipped with a volume element Definex = A(L, ) €
Q2(Emb(M, N)). Since dy = 0 and exterior differentiation commutes with the fibre inte-
gral, we see thatd= 0, i.e.,x is a presymplectic form on Enib/, N). From the definition
of the fibre integral, a short computation shows tht given by

Kozw) = [ friwizn, (1)
M
where f*iwizn € Q™ (M) is defined by

(fwizm @)1, ..., vm) = n(fON(Z(x), W(x), Dfx)vy, ..., DFx)vm), )

forall vy,...,v, € TheM,x € M, Z,W € TfEmb(M, N), f € Emi(M, N). Other
important properties of are given in Proposition 3.1.

Proposition 3.1.

1. ajr = A forall ¢ e Diff (M),
2. ﬁ:;x = A forall ¢ € Diff (N, n),
3. Kerix = Ker Dy.

Proof.
1. Letg e Diff *(M). We havea;;}\ = aj(AL, ) = Apl,m) = AL, ) = X, Where

we have used (1) of Lemma 2.1.

2. Lety e Diff (N, ). We haveﬁj;i = B (AL, m) = AL ¥*n) = AL, n) = &, where

we have used (2) of Lemma 2.1.

3. (3) Letf € Emb(M, N).

First suppos& € Ker Dy (f), so there existX € Vect(M) with Z = Dfo X. LetW €
TrEMOb(M, N),x € M, vy, ...,v, € TyM. Then, by 2),(f*iwizn)(x)(vy, ..., vy) =
n(f(x))(Df(x)X (x), W(x), Df(x)vy, ..., Df(x)vy,) = 0 because{Df(x)X (x), Df(x)
v1, ..., Df(x)v,} is a linearly dependent set. Hencé,e Keri(f), so KerDy(f) C
Ker i(f).

Conversely, supposé € Keri(f),so thatu(f)(Z, W) = Oforallw e TrEmb(M, N).
Choose a riemannian mettoon N such that valk) = n and denote by’} the geometric
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normal bundle off : M — (N, k). Then there exist uniqué € Vect(M) andZ* F(v’;)

such thatZ = Dfo X 4+ Z1. Assume thaZ ' # 0, so there exists an open $ein M such
that Z1|y is nowhere vanishing. Without loss of generality, we may assume)jhatis

trivializable. Now defineZ = Z+/||Z~+|/|y and chooséV e r(vk|y) such that Z, W) is

an oriented orthonormal trivialization 0f}|U. Finally, leta be a bump function oy and
defineW e TrEmb(M, N) by

_ a(x)W(x), xeU
W(x)_{o, x ¢ U, forallx e M.
Then we have G= A(f)(Z, W) = A(f)(Z1, W) = [}, fFiwizin = [, 1 Z+lavol (f*k)
> 0, a contradiction. We conclude that- = 0, so thatZ = Df o X € Ker Dy (f). Hence,
Keri(f) € Ker Dy (f). O

Corollary 3.2.

1. There exists a unique symplectic formon Sub(M, N) such thaty*x = 2, i.e,
(Sub(M, N), 1) is the reduced symplectic manifold associated with the presymplectic
manifold(Emb(M, N), ).

2. Via the actiong, Diff (N, ) acts by symplectomorphisms on the symplectic manifold
(Sub(M, N), »), i.e, B;;/\ = A for all ¢ e Diff (N, n).

Proof.

1. The facts thaaj;i = A for all ¢ € Diff *(M), and KerDy < Kerx imply thatx is
y-basic, so descends to a unique 2-faron SuliM, N) satisfyingy*A = A. Moreover,
2 is closed becausg* is injective andx is closed, and. is nondegenerate because
Keri C Ker Dy.

2. We havey*(B1) = (Byoy)*A = (y o By)*r = B (y*1) = ,3;;}\ = A = y*A. Hence,
sincey* is injective, 8, . = A for all y € Diff (N, ).

O

Definition 3.3. Suppose that — m = 2 and thatV is equipped with a volume element
Then(SubM, N), ) is called thesymplectic manifold associated withf, N, ).

Remark 3.4. To be precise, we should refert@s a weak symplectic form inasmuch as itis
only weakly nondegenerate, i.e. for eaglf] € Sub(M,N), the linear map
Z — M(fD(Z, ) of Tj;SubM, N), which is a Fréchet space, intd;, SubM, N),
which is not a Fréchet space, is injective with dense image, but it is not surj€stee
[1,4]). The adjective weak should always be understood, but it will be omitted in what
follows

As remarked in Section 1, there are several important classical geometries that give rise
to a volume element, so the above construction may be performed in a variety of interesting
situations. In this paper, we are concerned solely with the symplectic case. Thus, suppose
thatw is a symplectic form oV with n = 2r > 4, and let) = »" /r! be the corresponding
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Liouville form. In this case, the presymplectic fon(and hence the symplectic fork)
may be written explicitly in terms of the symplectic foim

Lemma3.5. Let f € Emb(M, N), Z, W € TfEmb(M, N). Then

- 1
AMNZ W) = —/ (wo IZ, W) ffw
(r =D Jm

—r =D fFizo A friye) A (fro) 2
Proof. A simple computation using Eq. (1). O

Proposition 3.6. Via the actiong, Diff (N, w), the symplectomorphism group @¥, ),
acts by symplectomorphisms on the symplectic manid(M, N), 1), i.e., B;;A = Afor
all v e Diff (N, w).

Proof. Noting that Diff(N, w) < Diff (N, n), we just apply (2) of Corollary 3.2. O

The programme now is to investigate the interaction of the symplectic geometry of
the finite-dimensional symplectic manifol&vV( w) with that of the infinite-dimensional
symplectic manifoldSulb(M, N), A). In particular, it is of interest to examine how special
classes of submanifolds @V, w), e.g., symplectic submanifolds, lagrangian submanifolds,
coisotropic submanifolds, fit together ®ub(M, N), A). The symplectic submanifolds
case is analysed in [9], and in Section 5 we apply our framework to the space of lagrangian
submanifolds of a symplectic 4-manifold. First, for convenience and by way of motivation,
we make a few remarks on the space of lagrangian submanifolds in general.

4. The space of lagrangian submanifolds of a symplectic manifold

For the convenience of the reader, we summarize the local structure of the space of
lagrangian submanifolds of an arbitrary symplectic manifold using the language of this
paper. For the technical details, we refer the reader to [10].

Let (N, w) be a symplectic manifold angf a compact, oriented manifold with =
2m. Let Emly(M, N, w) = {f € Emb(M, N) : f*o = 0} be the space of lagrangian
embeddings ofV into (N, w), and Sub(M, N, w) = Emikp(M, N, »)/Diff T(M) the
space of (oriented) lagrangian submanifolds(®f, w) of diffeomorphism typeM. Us-
ing the cotangent bundle charts given by the Weinstein lagrangian neighbourhood theorem
[10], it can be shown that EmgbM, N, w) is a closed submanifold of Eni¢/, N), and
that Su(M, N, w) is a closed submanifold of Sul, N). We then have the principal
Diff T (M)-fibrationyp : Emy(M, N, @) — Sulp(M, N, »), Whereyo = ¥ |Emby(M.N.o)-

We remark that the actiof of the group Diff(N, w) by automorphisms of restricts to an
action by automorphisms of the closed principal subbumpglle

Now let f € Emlp(M, N, w). Differentiating the lagrangian conditiofi*w = 0 gives
us thatT Emiy(M, N, w) = {Z € Vecty(N) : d(f*izw) = 0} € Vects(N) = TrEmb
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(M, N). Sincef is lagrangian, the epimorphisfiy Emb(M, N) — QYM); Z— frizw
projects to a natural isomorphisfi Sub(M, N) — QY (M); Z+DfoVectM) — f*izw.
Similarly, the epimorphisn?} s]Emy(M, N, ) — ZYM); Z — f*izw projects to a
natural isomorphism ofsjSulp(M, N, w) onto ZY(M). Here, Z1(M) is the space of
closed 1-forms onM. Using these isomorphisms, we will identiffy /) Sub(M, N) with
QY(M) andTj 1SUy(M, N, w) with Z1(M) for all [ f] € Sulp(M, N, o).

The above remarks may be summarized in the following manneig L&ulky(M, N, w)

— Sul(M, N)denoteinclusion. Thenthe exactsequenee Gsup,m,N,0) —> i TSubM,N)

— v, — 0 of vector bundles over SV, N, w) is just the exact sequence of vec-
tor bundles associated to the principal Difi)-bundleyg via the pushforward action of
Diff *(M) on the exact sequence-8 ZY(M) - QY(M) — QY(M)/Z (M) — 0 of real
vector spaces.

Finally, we describe the natural foliation on the manifold &M, N, ). Denote by
BY(M) the space of exact 1-forms dd. For f € Emin(M, N, w), define the subspace
I; of TAEmo(M, N, w) by Iy = {Z € Vecty(N) : f*izw € BY(M)}, and denote the
corresponding subspace Bfy)Sulp(M, N, ) by Ij71. Then, as above, the epimorphism
Iy — BY(M); Z — f*izw projects to an isomorphism df) onto B1(M). A distribution
on Suly(M, N, w) is defined as follows: associate witfi]| e Sulp(M, N, w) the subspace
I 11 of T{ /jSulp(M, N, o). Note that the corresponding subbundle§fy,a, v,y May be
identified with the vector bundle ErgM, N, ) Xpjg +(ar) BY(M) — Suly(M, N, ).
Weinstein [11] has shown that this distribution is integrable and the corresponding foliation
I is called thdasodrastic foliationof Suly(M, N, w).

5. The space of lagrangian submanifolds of a symplectic 4-manifold

We now discuss the space of lagrangian submanifolds of a symplectic 4-manifold within
the framework described in Section 3 (note that this is possible becauge=22 x 2). Let
(N, w) be a symplectic 4-manifold ant¥ a compact, oriented surface. Then (Definition
3.3), puttingny = %(a) A w), we have the symplectic manifol&ub(M, N), 1) associated
with (M, N, ). From Lemma 3.5, the corresponding presymplectic form is given by the
following proposition.

Proposition 5.1. Let f € Emb(M, N), Z, W € TrEmb(M, N). Then

MIZ, W) = /M((w o IZ, W) f*w — flizo A friww). 3

Corollary 5.2. Let[ f] € Sulp(M, N, w). Then the symplectic form off s/jSub(M, N) =
QL(M) is given by

Mo, 7) = /Mr Ao )

forall o, 7 € QL(M).
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Proof. Use (3), the lagrangian condition, and the natural isomorphisms described in
Section 4. O

In order to examine the nature of the embeddingSuly (M, N, w) — Sub(M, N) w.r.t.
the symplectic structureon SuliM, N), we must consider, for eacli] € Sutlp(M, N, w),
how the subspacé];;Sulp(M, N, w) sits inside the symplectic vector spac® jSub
(M, N), »([f]). To do this, we compute the symplectic complemef,Suly
(M, N, w))*1/D,

Lemma 5.3. Let[ f] € Sulp(M, N, ). Then(Tj s1Sulp(M, N, w)*UD = BL(m).

Proof. First leto e (Tj;Sulb(M, N, w)*1D | so thatr([f])(o,7) = 0 for all e
Ti;1Sulpy(M, N, w) = ZX(M). Hence,[,,bdo = —[,,db Ao = —A([f])(o,db) = O
for all b € Q°(M). We conclude thatd = 0, i.e.,oc € Z1(M). Now consider §] €
HY(M), whereH1(M) is the first de Rham cohomology spacelf By Poincaré duality,
H(M) is equipped with the symplectic for,;, whereQy, ([t1], [t2]) = Syt A T for
all [t], [r2] € HY(M). Suppose that € Z1(M). Then,Qu([ol.[]) = [,T Ao =
A([f] (o, T) = 0, so by the nondegeneracy@f,, we have §] = 0, i.e.,c € BL(M). We
conclude that7j ;;Suly(M, N, w)*&D < B (M).

Conversely, suppose that € B(M), sayo = da, wherea € QO(M). Lett €
Ti 1Subby(M, N, ) = Z1(M). Then ([ f] (o, 7) = [,,TA0 = [,,TAda = [,,adr = 0.
Henceo e (T 1SUly(M, N, 0))* 1D so BL(M) C (T; Sulnp(M, N, w))* /D, 0

Theorem 5.4, Let (N, w) be a symplectic 4-manifold and a compact, oriented surface.
Consider the embedding : Suly(M, N, w) — (Sub(M, N), 1) of the manifold of la-
grangian submanifolds dafN, ») of diffeomorphism typ@/ into the symplectic manifold
of all submanifolds ofV of diffeomorphism typ#/. Then

1. ip is a coisotropic embedding

2. ip is a lagrangian embedding if and onlyM = 5.

Proof. Let [f] € Sulp(M, N, w). Then, by Lemma 5.3(7} s} Sulp(M, N, o)D) =
BY(M) € ZY(M) = Tj;Sulpy(M, N, ), so Tj;jSulp(M, N, ) is a coisotropic sub-
space of the symplectic vector spa@&ySub(M, N), A([ f])). Hence, the inclusiory :
Sulp(M, N, w) — (Sub(M, N), 1) is a coisotropic embedding. Furthermoigjs a la-
grangian embedding if and only B1(M) = zY(M), i.e., if and only if H1(M) = 0.
Since dimH1(M) = 2genugM), we see thaly is a lagrangian embedding if and only if
M = S2. O

Remark 5.5. Consider the manifol&ub(M, N). This may be given extra structure in two
different ways. On the one hand, choosing a volume elementV furnishesSub(M, N)

with the associated symplectic structar¢Definition 3.3). On the other hand, choosing a
symplectic formw on N gives rise to the closed submanif@dky(M, N, w) of Sub(M, N)

asin Sectiod. Theorenb.4may now be interpreted in terms of the interaction between these
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two methods of imposing structure®al(M, N). Fix avolume elememton N and consider

the symplectic forms oN whose Liouville form is equal tg; such symplectic forms will be
calledn-compatible. The key pointis that the lagrangian submanifolds of gacimpatible
symplectic formw are ‘detected’ by the symplectic structure— which depends only on

n — in the sense that each of the submanifdiddy (M, N, w) is actually coisotropic in
(Sub(M, N), 1). Thus, the compatibility of symplectic forms and volume elements manifests
itself at the level of lagrangian submanifolds. This idea will be explored further elsewhere,
as will the way in which the family of coisotropic submanifo{@uby(M, N, w) : o is
n-compatiblg fit together in the symplectic manifol8ub(M, N), 1) associated withy.

Let us return now to the situation where we have a fixed symplectic foram N,
and consider the symplectic reduction associated with the coisotropic embegdding
Suly(M, N, w) — (Sul(M, N), ). Since(Tj ;;Suly(M, N, wo)* UV = BL(M) = Ijp
for each [f] € Sulp(M, N, w), the characteristic distribution &f is precisely Weinstein’s
isodrastic distributiod as described in Section 4 (thus we have an alternative proof of the
integrability of I in the four-dimensional case). This gives us a foliation of@dh N, w)
by isotropic submanifolds afSulb(M, N), A). Furthermore, locally at least, we have a fi-
brationrz : Suly(M, N, w) — P, where the leaf space = Suly(M, N, w)/I is equipped
with a symplectic structur€ satisfyingz*Q2 = igA (the global existence of such a fi-
bration will be explored elsewhere). We now give a more concrete descriptiah, 61),
the reduced symplectic manifold associated vigthFirst observe that Diff (M) acts by
linear symplectomorphisms on the symplectic vector sgats M), Q2,,), where, as in
the proof of Lemma 5.32), is the symplectic form coming from Poincaré duality. There-
fore, associated to the principal DiftM)-bundleyg is the symplectic vector bundie :
Emhy(M, N, w) X piff + (M) HY(M) — Sulp(M, N, w). Using Corollary 5.2 and Lemma
5.3, we see that may be naturally identified with the symplectic vector bundfep, =
TSu[b(M,N,w)/Téutb(MyNyw). To summarize:

Theorem 5.6. Let (N, w) be a symplectic 4-manifold and a compact, oriented surface.
Then each tangent space of the reduced symplectic marifglf2) associated with the
coisotropic embedding : Sulpy(M, N, w) — (Sub(M, N), 1) may be naturally identified
with the finite-dimensional symplectic vector spade- (M), Q27).

Finally we note that, in the case = S2, the reduced symplectic manifold is just a
point. Furthermore, using the ideas in the penultimate paragraph of Section 4, we see that
the total space of the cotangent bundle of the lagrangian submanifoid3uly, ») of
(Sub(M, N, 1)) is given by T*Suty(M, N, w) = Emby(M, N, ®) Xpjg+ ) (QLM)/
ZH(M)).

6. Further work

In this paper we have examined some basic aspects of the space of lagrangian surfaces
in a symplectic 4-manifold within a framework of infinite-dimensional symplectic geom-
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etry. Clearly there remains much to be done in terms of both theory and applications.
Examples of interesting possibilities for further work include: further connections with
Weinstein’s approach to the Berry phase [11]; links with symplectic topological work on
lagrangian knots, see, e.g. [3] and references therein; the action ¢MDiff), and of the
subgroup HarV, ) of hamiltonian symplectomorphisms, on SuM, N, w); the role of
Sulp(M, N, w) in the geometric quantization of the symplectic manif¢daib(M, N), 1)

inthe casé = S2; computations for particular symplectic 4-manifolds such as products of
surfaces, cotangent bundles of surfaces, and complex surfaces. We intend to return to some
of these areas elsewhere. We remark that some of these ideas are also relevant in the study
of the manifold of symplectic submanifolds which may be analysed using a framework
of infinite-dimensional symplectic fibrations, symplectic connections and weak coupling
forms (see [9]).
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